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MODIFICATION OF THE FRACTURE CRITERION

FOR V-SHAPED NOTCHES (PLANE PROBLEM).

RELATIONSHIP BETWEEN TOUGHNESS AND

STRENGTH AND STRUCTURAL PARAMETERS

UDC 539.375V. M. Kornev and V. D. Kurguzov

A fracture criterion of the type of the Neuber–Novozhilov criterion is proposed to describe the fracture
in the vicinity of the tip of a V-shaped notch under tensile and shear loading. In the proposed
criterion, the limits of averaging of the stresses along the notch axis depend on the presence, location,
and size of the initial defects in the material. The crystal lattice parameter of the initial material is
chosen for the characteristic linear size. For a V-shaped notch subjected to tension and shear, simple
equations are obtained that relate the stress intensity factors for the modified singularity coefficients,
the singularity coefficients themselves, and the theoretical tensile and shear strengths of a single
crystal of the material taking into account the damage to the material in the vicinity of the notch
tip. The equations obtained allow a passage to the limit from a notch to a crack. It is shown that
the classical critical stress intensity factor used in the strength analysis of cracked solids is not a
material constant.
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Introduction. In classical fracture mechanics, the force and deformation fracture criteria are intended for
application to domains with cracks. Attempts to use these criteria directly in the fracture analysis of bodies with
V-shaped stress concentrators fail as a rule. The Neuber–Novozhilov approach [1, 2] allows one to describe the
fracture of cracked bodies with a structural hierarchy [3–5] under loads corresponding to three classical modes of
cracks. The discrete integral criteria are based on the concepts of classical fracture mechanics (solid mechanics)
and solid state physics [6, 7] related to the crystal structure of single crystals. If the real spatial arrangement of
atoms in a single crystal is taken into account, cracks in it cannot be modeled by bilateral notches. Even in the two-
dimensional case, it makes sense to consider V-shaped notches with the tip angle dependent on the characteristics
of the crystal lattice. The peculiarity of fracture problems for bodies with sharp notches is discussed in [8, 9]. In
the vicinity of a V-shaped notch, the stress fields consist of regular and singular components and the singularity
coefficient depends on the tip angle [10] and coincides with the singularity coefficient of the stress field near a crack
only in the limiting case where a V-shaped notch becomes a bilateral notch (crack).

The drawbacks of classical crack theory, in which material structure is ignored, have stimulated the construc-
tion of multiscale strength criteria taking into account the structural hierarchy: macrolevel (standard reinforced
specimen), mesolevel (regular granularity of materials), and microlevel (particular structure of the atomic lattice
in the vicinity of the crack tip). Panasyuk et al. [11] studied the dependence of the critical stress intensity factor
(SIF) on the standard mechanical characteristics of materials with allowance for material structure. Kornev [4]
proposed consistent discrete integral strength criteria for mode I cracks in solids containing a hierarchy of embed-
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ded structures whose linear sizes differ by two orders of magnitude and can vary from 10−7 to 102 cm. Multiscale
shear strength criteria for rock blocks with block-hierarchical structure are considered in [5]. In [12], a generalized
sufficient discrete integral strength criterion describing the prefracture zone for mode I cracks in structured media
was constructed for elastoplastic materials. In addition, exact and approximate equations were obtained that relate
critical parameters, the theoretical strength of granular materials, grain size, and the parameters characterizing the
averaging interval and the damage to the initial and plastically deformed material.

In the last decade, the shape and size of notches or inner angles in structural members have been studied more
extensively than the crack shape and size (see, e.g., papers by Seweryn [13–15], Carpinteri [16], and Dunn [17, 18]).
The effect of the stress–strain state near V-shaped notches on the strength of welded joints is considered in [19].
The stress field near a V-shaped notch for antiplane deformation is described in [20]. In the present paper, the
applicability of the Novozhilov criterion to determining the fracture strength of solids with V-shaped notches is
analyzed using as an example an elastic half-plane with an edge V-notch subjected to combined tensile and shear
loading at infinity.

Stresses in the Vicinity of the Tip of a V-Shaped Notch. Let a plate under plane-strain or plane-
stress conditions be bounded by two intersecting planes so that the region studied is an infinite dihedral angle 2α

(Fig. 1). We study the stress field in the vicinity of the notch tip caused by tensile and shear stresses applied at
infinity. We introduce Cartesian coordinates Oxy and polar coordinates Orθ. It is assumed that the body and load
are symmetric about the notch axis. Then, because of the symmetry of the problem, the maximum stresses occur
on the notch axis. In the vicinity of the notch tip, the linear solution for the tensile stress σθ(r, θ) and the shear
stress τrθ(r, θ) on the notch axis θ = 0 can be written with accuracy up to terms of higher order of smallness as
follows:

σθ(r, 0) ' σ∞ + KIr
λ1−1/

√
2π (1)

for tension and
τrθ(r, 0) ' τ∞ + KIIr

λ2−1/
√

2π (2)

for pure shear. Here σ∞ = const and τ∞ = const are the characteristic stresses, KI is the generalized tensile SIF
for the singular component rλ1−1, KII is the generalized pure-shear SIF for the singular component rλ2−1, and
λ1 = λ1(α) and λ2 = λ2(α) are roots of the characteristic equations [10]

sin 2λ1α + λ1 sin 2α = 0 (3)

and
sin 2λ2α− λ2 sin 2α = 0 (4)

for tension and shear, respectively. The characteristic stresses σ∞ and τ∞ are determined from the constructed
stress fields σθ(r, θ) and τrθ(r, θ).

Figure 2 shows the solutions of Eqs. (3) and (4) versus the angle α (the dashed curve refers to the solutions
of these equations that do not contain a singular component). For α = π (crack) and α = π/2 (half-plane), the
roots λ1 and λ2 coincide. For any root λ < 0, the displacements at the point r = 0 tend to infinity and, hence, this
case is not considered. If λ = 0, the total strain energy in any circle r < R enclosing the notch tip is unlimited,
which is physically impossible. In view of these considerations, all roots λ ≤ 0 should be eliminated from the
consideration. We note that for α < 2.252, the stresses τrθ are limited in the vicinity of the notch tip since λ2 > 1.
Moreover, λ1 < λ2 in the entire range of the angle α. It follows that for π/2 < α < π, the degree of singularity
of the stresses produced near the notch tip by tensile loading is higher than that of the stresses due to shear at
infinity. We consider two cases: λ1 > 1/2 and λ2 > 1/2 for α < π and λ1 = λ2 = 1/2 for α = π (bilateral cut).
For the crack, the generalized SIFs KI and KII become the classical SIFs K0

I and K0
II for a sharp crack. Only in

the last case can methods of classical fracture mechanics for cracked solids be applied. In the first case (α < π),
the singularity of the stress field is smaller than that of the stress field at the crack tip; therefore, the classical
approach is not applicable to the strength analysis of bodies with V-shaped notches. Thus, we have 1/2 < λ1 < 1
and 1/2 < λ2 < 1 for π/2 < α < π. For α = π/2, we obtain λ1 = λ2 = 1; in this case, a singular component is
absent.

Brittle Fracture Criterion for Bodies with V-Shaped Notches. We consider a single crystal with
a V-shaped notch whose tip angle depends on the crystal-lattice characteristics. We confine ourselves to a two-
dimensional case. It is assumed that there are vacancies ahead of the notch tip. Figure 3 gives a schematic diagram
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of such a close-packed layer of atoms with a vacancy (the atoms are shown by circles and the vacancy is denoted
by a cross; re is the interatomic distance and α = 2π/3).

For the weakest monatomic layer, the following discrete integral criterion of brittle strength (for the two-
dimensional case) is proposed for V-shaped notches under plane-strain or plane-stress conditions:

1
kre

nre∫
0

σθ(r, 0) dr ≤ σm (5)

for tension on the notch axis and

1
kre

nre∫
0

τrθ(r, 0) dr ≤ τm (6)

for pure shear on the notch axis. In formulas (5) and (6), σθ(r, 0) are the tensile stresses on the notch axis,
τrθ(r, 0) are the shear stresses on the notch axis (these stresses act within the thickness of the single crystal), n and
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k are integers (n ≥ k, where k is the number of interatomic bonds), nre is the averaging interval (n = 2 and k = 1
for the case shown in Fig. 3), σm and τm are the theoretical (ideal) tensile and shear strengths of the single crystal
for the plane θ = 0, respectively.

Substituting relations (1) and (2) into (5) and (6), respectively, after some transformations we obtain the
following estimates of the generalized SIFs KI and KII for a V-shaped notch in the presence of vacancies on its axis
in the plane problem:

KI

λ1

√
2π(nre)1−λ1

1
σ∞

≤ σm

σ∞

k

n
− 1 (7)

for tension and
KII

λ2

√
2π(nre)1−λ2

1
τ∞

≤ τm

τ∞

k

n
− 1 (8)

for pure shear. As α → π, we obtain λ1 = λ2 = 1/2, and estimates (7) and (8) become estimates for the classical
SIFs K0

I and K0
II for a sharp crack:

2K0
I /(σ∞

√
2πnre ) ≤ (σm/σ∞)(k/n)− 1 (9)

for tension and

2K0
II/(τ∞

√
2πnre ) ≤ (τm/τ∞)(k/n)− 1 (10)

for pure shear. For K0
I = K0

Ic and K0
II = K0

IIc, inequalities (9) and (10) become equalities (K0
Ic and K0

IIc are the
critical mode I and II SIFs in classical fracture mechanics, respectively). According to the data of [21], we obtain
K0

I = σ∞
√

πlnk and K0
II = τ∞

√
πlnk for an internal crack and K0

I = 1.1215σ∞
√

πlnk and K0
II = 1.1215τ∞

√
πlnk

for an edge crack (2lnk and lnk are the lengths of the internal and edge cracks, respectively); therefore, the critical
lengths of these cracks 2lcnk and lcnk satisfy the equalities

2lcnk

re
=

(σm

σ∞
− n

k

)2 k2

n
, 2.52

lcnk

re
=

(σm

σ∞
− n

k

)2 k2

n
; (11)

2lcnk

re
=

( τm

τ∞
− n

k

)2 k2

n
, 2.52

lcnk

re
=

( τm

τ∞
− n

k

)2 k2

n
. (12)

Obviously, relations (11) and (12) allow one to pass to the limit as K0
I → 0, K0

II → 0, and lnk → 0. In the absence
of microdefects (vacancies) and macrodefects (cracks) in a specimen, we obtain n = k = 1 and lnk = 0, respectively.
In this case, the theoretical strength σm or τm of an ideal crystalline material is reached.

It should be noted that there exist exact limiting relations [21] that link the SIFs of sharp cracks and the
stress-concentration coefficients at the tip of a narrow notch. The stress-concentration coefficients have always been
related to the geometry of the problem studied [1], and the critical SIFs K0

Ic and K0
IIc of cracks are regarded in

classical fracture mechanics as material constants.
Generalization for Structured Media. The brittle-fracture criterion proposed above for a single crystal

with a V-shaped notch can be extended to bodies with an hierarchy of regular structures.
Following [4], we consider a solid body which contains p embedded regular structures such that their linear

sizes ri (i = 1, 2, . . . , p) are ordered as follows: ri � ri+1 and each linear size differs from the next one by at least
two orders of magnitude. We introduce a family of brittle-strength discrete integral criteria consistent for each
structure:

1
kiri

niri∫
0

σ(i)
y (xi, 0) dxi ≤ σ(i)

m

for tension and

1
kiri

niri∫
0

τ (i)
xy (xi, 0) dxi ≤ τ (i)

m

for pure shear. Here σ
(i)
y and τ

(i)
xy are the normal and shear stresses on the notch axis, respectively, Oixiyi are

Cartesian coordinate systems with origins at the apices of notches of various scales, ni and ki are integers (ni ≥ ki,
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where ki is the number of active bonds acting at the notch tip of the ith structure), niri is the averaging interval,
and σ

(i)
m and τ

(i)
m are the theoretical tensile and shear strengths of the material of the ith structure, respectively.

In each structure i = 1, 2, . . . , p, the number of structural units is constant and equal to one force parameter (σ(i)
m

or τ
(i)
m ), one structural parameter ri, where ri is the diameter of the “grain” of the structure considered, and the

averaging and defect parameters ni and ki, respectively, for ki < ni. Since we consider regular structures, the
parameters indicated above are constant for each structure i = 1, 2, . . . , p, but for different structures, they may
differ substantially not only in the linear size ri � ri+1.

The stresses σ
(i)
y and τ

(i)
xy on the notch axis can be calculated after the solution of the corresponding linear

elastic problems for specified loads (p is the number of these problems). Expressing solutions (1) and (2) for the
stresses on the notch axis in terms of K

(i)
I and K

(i)
II , we can write

σ(i)
y (xi, 0) ' σ(i)

∞ + K
(i)
I xλ1−1

i /
√

2π,

τ (i)
xy (xi, 0) ' τ (i)

∞ + K
(i)
II xλ2−1

i /
√

2π

and obtain estimates for the generalized SIFs K
(i)
I and K

(i)
II similar to (7) and (8).

Various approaches to determining structural levels and structural parameters are available. McClintock and
Irwin [22] suggested five basic structural levels — from macro-objects to microstructures for metals: 102, 1, 10−2,
10−4, and 10−6 mm and four additional levels; for a specimen 1 mm thick, the first macrostructure corresponds to
plane stresses, the last three microstructures correspond to plane strains, and the second microstructure occupies an
intermediate position. Neuber [1] and Novozhilov [2] considered the fourth and fifth levels of the indicated structures,
respectively. Panin [23] distinguishes four structural levels — from a macrolevel to a microlevel through meso-II and
meso-I levels. The characteristic linear sizes ri and damage parameters ki/ni are determined by methods of metal
physics for each structural level (for example, using optical and electron microscopy, X-ray methods, etc.) [24]. The
force parameters σ

(i)
m or τ

(i)
m for each structural level can be treated as follows: plastic flow stresses of metals for the

macrolevel, plastic flow stresses of the corresponding mesostructures obtained by microindentation [25, 26] for the
mesoleveles, and theoretical tensile and shear strengths of ideal crystalline solids, respectively, for the microlevel [2, 4,
7, 27].

The following procedure is proposed to determine the critical generalized SIF KIc at the macrolevel i = 1
(the SIF KIIc is determined in a similar manner). For long cracks, from relation (9) we obtain

2K0
Ic

σ∞
√

2πnr1
=

σm

σ∞

k

n
, whence

√
2K0

Ic√
πr1

=
k√
n

σm. (13)

For real materials, k = 1, 2 and n = 1, 2, 3, and, hence, the ratio k/
√

n is in the range 0.71 ≤ k/
√

n ≤ 1.15,
i.e., it is close to unity. For simplicity, we confine ourselves to the case of n = k = 1 (material without damage).
From (13), we obtain the theoretical strength of the material of the macrostructure i = 1: σm =

√
2K0

Ic/
√

πr1. The
value of σm is used to calculate the critical generalized SIF KIc of a V-shaped notch. For a long V-shaped notch,
from relation (7), we obtain

KIc

λ1

√
2π r1−λ1

1

= σm, whence KIc = σmλ1

√
2π r1−λ1

1 . (14)

Substitution of (13) into (14) yields the following relation between the critical generalized SIF and the critical SIF
of a sharp crack:

KIc = 2K0
Icλ1r

1/2−λ1
1 . (15)

In the limit as α→ π, we have KIc → K0
Ic.

Numerical Example. As an example of determining the generalized SIF, we consider three-point bending
of a prismatic specimen with a V-shaped notch. The geometry of the specimen and the acting loads are shown
in Fig. 4a. We use the following dimensionless geometrical and loading parameters: t = 1, b = 10, L = 4b, and
P = 1 (t is the specimen thickness). In the calculations, the tip angle was β = 30◦, 45◦, 60◦, 90◦, 120◦, and
150◦ and the notch depth measured in the units of l/b was varied from 0.1 to 0.9. Similar prismatic specimens
have been used in toughness studies [28]. Experimental results on three-point bending of polymethylmethacrylate
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specimens for various values of the angle β and notch depth were obtained in the experiments of [17], which were
aimed at determining the critical SIF and fracture load. In the same study, the stress distribution in the vicinity
of a V-shaped notch was obtained by the finite-element method and KI was calculated for the given geometry and
loading.

Using the finite-element method, we determined the plane stress distribution in a notched specimen. Fig-
ure 4b shows the finite-element mesh for β = 30◦ and boundary conditions. The coordinate origin is located at
the notch tip, the Ox axis is horizontal, and the Oy axis is vertical. In the vicinity of the notch tip, the mesh was
extremely fine to determine KI as accurately as possible. The mesh shown in Fig. 4b contains 8580 sixteen-node
elements connected at 77,809 nodal points. The stresses were calculated at the Gauss–Legendre integration points
of the elements adjacent to the Oy axis. A 4 × 4 integration scheme was used. The generalized SIF KI was cal-
culated by the least-squares method from the relation σx(0, y) = KIy

λ1−1, where λ1 is a root of the characteristic
equation (3). The numerical experiments showed that it suffices to use the values of σx at four points of the element
adjacent to the notch tip: the addition of the second and third elements does not improve the calculation accuracy.

The numerical data were compared with analytical solutions. For β = 0◦ (a beam with a crack), an
approximation formula for KI is given in [21, p. 360]. Compared to the exact value, the error of the calculated KI

is 1.5%.
Figure 5 gives an approximation relation; the points refer to the numerical solution. The values of λ1 and

the dimensionless SIF KI for unit load are listed in Table 1 for various values of β for l/b = 0.5. Since the problem
is linear, one can easily calculate KI for any other value of P and, using the critical SIF KIc, obtain the rupture
load Pc. Figure 6 shows KI versus notch depth for β = 30◦ (curve 1) and β = 90◦ (curve 2).
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TABLE 1

β, deg λ1 KI

0 0.5000 6.6141
30 0.5015 6.6332
45 0.5050 6.6645
60 0.5122 6.7284
90 0.5445 7.0134
120 0.6157 7.5936
150 0.7520 8.6791

Owing to the symmetry of the problem, the shear stresses vanish on the Oy axis, and only KI was determined.
For nonsymmetric bending, both tensile and shear stresses occur near the notch; therefore, one should find the
generalized SIFs KI and KII using the approximation relation

σx(0, y) = KIy
λ1−1 + KIIy

λ2−1.

Conclusions. We pay attention to the dimensionality of the generalized SIFs KI and KII, which, as follows
from formulas (7) and (8), depends on the tip angle of the notch. In classical fracture mechanics, the critical
generalized SIFs of a material KIc and KIIc depend on the tip angle of the notch. According to the discrete
integral criteria (5) and (6), the critical state of a crystal structure ahead of the tip of a crack or cut occurs
when the averaged stresses in the interval (0, nre) reach the theoretical strength with allowance for the damage
to the material. Criteria (5) and (6) and the criterion proposed in [12] are force one-parameter criteria in the
interval (0, nre). These parameters are the theoretical strengths σm and τm. The minimum length of the averaging
interval is equal to re. Estimates (7) and (8), which take into account the material structure, are local estimates
and are determined mainly by the singularity coefficients 1− λ1 and 1− λ2.

In classical fracture mechanics, the critical values of the generalized SIFs KIc = KIc(α) and KIIc = KIIc(α)
need to be determined for each angle α and each material. It is more reasonable to assume that the critical SIF
for a crack is not a material constant. The theoretical strength σm or τm of the regular structure considered is a
material constant, which is seen from formulas (7) and (8), and the generalized SIFs KI and KII constructed for
the specified boundary conditions are a convenient approximation of solutions (1) and (2).

Thus, for all three types of stresses (tension, shear, and antiplane strain), we obtain one equation that relates
the critical SIF to the theoretical strength of the single crystal:

Kic

λi

√
2π (nre)1−λi

1
σi
∞

=
σi

m

σi
∞

k

n
− 1,
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where superscripts i = I, II, and III refer to three types of cracks; σI
m = σm and σII

m = τm (shear), σIII
m = τm

(antiplane strain), σI
∞ = σ∞ and σII

∞ = τ∞ (shear), and σIII
∞ = τ∞ (antiplane strain); λI = λ1 is a root of the

characteristic equation (3), λII = λ2 is a root of the characteristic equation (4), and λIII = ω is a root of the
characteristic equation (1.2) of [20].
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